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THE HYPERSONIC AREA RULE

M. D. Ladyzhenskiy (Moscow)

The hypersoconlc area rule has been formulated in a
work [1{ and in a hypothesis [2] that all the mass of
a gas 1ls concentrated in an infinitely thin layer
contlguous to the shock wave, According to that rule
when thin non-axlally-symmetrical blunt bodles with
the same bluntness drag values and the same laws

of transverse area change in the directlion of the
stream, are subjected to flow, the shock-wave sur-
fages, the laws of pressure change, and consequently
aiso the forces of resistance acting on the body
colncide, and 1n this process the surfaces of the
shock waves have axlal symmetry.

1. Determining the results' bounds of applicability [1]. As

an example of applying the hypersonic area rule [1] let us construct
a body equlvalent to a thin cone of revolutlon, i.e, having the same
bluntness drag values and the same law cf cross-sectlonal area change
in the stream direction as a cone. The cross-sectlon of the body

1s assumed to be elllptical, the larger semlaxls of which equals the
radius of the shock wave and the area of which equals the area of the
cross-section of the cone of revolution (Fig. 1). In other words the
eccentricity of the ellipse 1n each sectlon has the largest possible
value compatible with the demand (condition 3 in work [1]) that the
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'body must not exceed the volume delimited by the shock wave.

As was noted in tli: *rrk [1] the area rule may be combined with
the law of similarity in the flow about tiri:. kiimt bodies [2], as a
result of which dimensionless values characterizing the flow are defined
at a fixed value of the index of adiabatic curve n by two dimensionless
parameters: the known parameter of simlilarity of flow about thin
blunt bodies X = M_ T and the parameter K, = m/2c S)1/2LT , character-
izing the effect of bluntness and equal in order of size to the
Square root of the ratio of body drag to bluntness drag. Here T~Sl/2/L
1s a small dimensionless value characterizing the thickness of the
body; S, 1s a certain representative area of the body's cross-section;
L 1s the length of the body; Cys S are coefficl ent of bluntness drag
_ and the area of the mid-section of the bluntness [surface area per
unit depth] respectively.

The shape of the bluntness 1s non-essentlal in the assumption
[1] that the effeet of bluntness may be replaced by the effect of a
blast at the forward point of the body with an energy equal to blunt-
ness drag. In view of this the area of bluntness S is introduced
int o the expression for K; instead of the diameter of the bluntness.
Let us suppose that the Mach number M, of the free stream equals
infinity. Then when n 1s fixed the dimensionless varlables will
depend upon the single parameter K,.

Figure 2 shows 1in the form of curvés (for the case of K = 1.4)
the relationshlips of the values 5_(ratio of the major to the minor
semiaxis) and (X - Xo)/Xo (ratio of boedy drag without bluntness
drag to bluntness drag) in the function K; = (w/2c S)1/2L tan® a where
a 1s half the apex angle of the cilrcular cone. The shape of the

shock wave was defined from thé solution of the problem of flow
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around a thin blunted cone in accordance with Chernyy [2]. It is
sensible to use the area rule when X/XO > 1.1, which, as follows
from Fig. 2, corresponds to K; > 0.1, At lesser values of K the
body drag 1s practlcally determined by the value of the bluntness
drag. At large values of K; the area rule becomes invalld when k
approaches unity (more accurately when k-1 ~ (u-1)/(n+1) [1]), which
occurs approximately at K, = 1.2.

Thus, the range of applicatlion of the area rule lles withln the
limits O.l.g_Kl < 1.2, Moreover the ellipse 1n the cross-sectlon of
the body may have an amply extended shape differing from a circle
(13.2_k 2_1.3). This result may be of practlcal interest. But seelng
that the results are obtalned 1n rough assumptlons about the concen-
tration of all the gas's mass in an infinitely thin layer behind the
shock wave we must deflne more exactly the area rule.

2. A more exact definltlon of the area rule. As before we

assume that M& > 1, but in contrast to another work [1], we do not
impose the compulsory condition M&T > 1. We introduce a cylindrical
system of coordinates xL, yL, 6 (the x axls passes through the leading
point of the body and i1s directed along the stream). Let us desilgnate
by uv,_, VU&; wU_ the components of the veloclty im the axlal, radial,
and clrcular directions respectively; ppwUzw i1s the pressure, PPy
the density, U, the velocity of the free stream along the x axils,
P, its density. We will characterize the bluntness value wlth the
dimensionless bluntness diameter dL, where d 1s a small quantity. We
will write the equation of the body surface in the form y = 1f(x, 60).
Let us separate the entropic layer, 1.e., the reglon occupied by
the lines of flow which have passed that area of the surface of the

shock wave where the angles of Inclinatlion formed by the surface of the
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shock wave with the direction of the free flow are not small (Fig. 3).
Let the equation of the provisorily interpolated boundary of the
entropic layer be y = 69(x, O) where & 1s a small quantity. Begilnning
at a certaln x = Xy ™ d the angles of inclination of the boundary of
the entropilc layer will have order 6.

Below are listed the estimates of the parameters of the stream in
the entroplc layer similar to those outlined in another work [3]. Let
us also note that the influence of the entroplc layer on the pressure
distribution on a thin blunt cone 1s also examined in a work [4].

Let us assume that on the surface of the entropic layer the
relationshlp p ~ d® holds true, where o 1ls a positive number whilch
can be determined.

As results from the followlng, the order of pressure across the
entroplc layer ls sustained, therefore we may write p ~ &% for the
density, using the conditions of adiabaticity. Let us now write the
continulty equation for the entroplc layer. Equating the flow rate in
the entropic layer with the flow rate in the stream channel in the
free stream across an area equal to the midseztion of the bluntness
we have

d~pou s, (1)
where o is the area occupied by the entropic layer in the cross-
section where x = const (hatched in Flg. 3). Insofar as thls follows
from the Bernouilll equation in the entropic layer u ~ 1 we have

c=d2 = &

It 1s obvious that for & entering the boundary equation
of the entropic layer we get the evaluation

6% 54, (2)
where S i1s the area of a cross-section of the body. Let us require

that the area of the body in its order of magnitude not exceed the

.




entropic layer 8 ¢ o. Then, obviously .

X

brad A, (3)
Since the usual estimate p ~ 62 for the hypersonic stream on the
exterior boundary of the entropilc layer 1is correct for pressure we

derive the equation for determining a:

«lx~112~_:-' . 2% (4)

E -
x -1

Finally for the stream parameters 1n the entroplc layer we have:

Rik 2 « 24 (5)
p~ d'nvl’ (o~ d® H’ & ~ uurl_ FRUCES

on condition that T and d are connected 1ln order of values by the

relationship derived from the condition S ~ o:

_X.
T~ dx«H

This relationshlp practically colncides with the condition = ~\ﬂ;_l
expressing the fact that body drag is comparable in order of magnitude
with bluntness drag [2].

Let us estimate the pressure drop in the entropic layer.

We have from the equation of motion

. dp . ar dv e de
(gt &) (7)
__i_ gp_ e du o dw Lo dw
R G R D
o 1 ap
Consequently bﬁ\thf' » slince all terms on the right side of Eq. 7

are of the same order of smallness. Hence, taklng Eqs, 5 and 6 into
conslderation, the followlng estimate 1s correct for the drop in

pressure 1n the radlal as well as in the circular direction:

2Ax =1

A[""d:‘\"( %
Thus the pressure 1n the entropic layer may be considered constant

wlith a relative error

Ap :

i (8)

somewhat greater than the relative error in the theory of slight




disturbances in the hypersonlc stream, equalling T2 as 1s well known.

Let us formulate the flow problem. When x < X let there be an
axisymmetrical nose-plece of a body with an axis of symmetry along
the x axls, the flow about which 1s completely calculated. As follows
from what has been set forth, since the entropiec layer cannot restrain
the drop in pressure in the circular direction the pressure in the
cross=-sectlon where x = const in the area where x > X, on the exterior
boundary of the layer must be constant. To fulfill this condition it
1s enough that the surface delimliting the entropic layer have axial
symmetry. (Its equation may moreover be written y = 8¥(x).)

Then the flow outside of the entropic layer, axisymmetrilcal
according to agreement when x < X,» Dbreserves axlal symmetry also
when x > x, and, consequently the stlpulation that the pressure be
constant 1n the clrcular direction on the exterior boundary of the
entropic layer will be fulfilled.

Let us derive the equatlon connecting S and ¢ when x > X for
which, as in Sychev [3], we use the contlnuity equation. We will
designate values in the surface X5 with the subscript 0. Separating
the elementary stream channel in the entropy layer we will write this
flow-rate equation for 1t:

PuttayodBodyo == puydfdy. (9)
From adiabaticity equations of Bernoullli, too, who rejects terms

of order T2 we have for p and u:

1 x~1
o (Z) s My I ‘ Lo
P —ro(po)" : i‘-_r"‘xix {,’—Z(,,%) Yot (% —1) M2 (1)

Let us analyze Eq. 9 for pu and integrate over the whole area of the
entropy layer in the cross-section x = X5 (we utilize the circumstance

that the coordinates of the chosen current lines y and 6 satisfy the



relationships y = y(y,, 90), 6 = G(yo, 60)). On the right side of the
equality we obviously will obtaln area o occupled by the entropy layer
in cross-section x. Taklng into consideration the axisymmetry of the

boundary of the entropy layer we have ¢ = 7m62Y*(x) - S. Finally, the

deslred relationship is written

A8 () — F i) o (@),
. RN R A T
Y (p) e (U [ F0)% Y= 3 Rt Tpe
Fp) = SS ( p) a ME o sl (11)
a ! . x—1
14 2—_L-n;£_£1.£)n
x—1 a2 x—1 po \po.

Axisymmetrical flow outside the entropy layer when x > X, may be
computed by one of the known exact methods, e.g., by the method of
characteristics, The boundary of the entropy layer will be defined
moreover in the process of solving from Eq. 11 which plays the role
of an edge condition replacing the condltion of non-flow. Hence 1t
follows that flow when x > X5 is completely determined by the assign-
ment of a law of change in the area of the cross-section of the body
S(x). In this, one must impose one more obvious limitation on the
shape of the body: 1t cannot exceed the limits of the "entropy circle"
(see Flig. 3), which may be symbolically written
S CagY(x). (12 )

We may now formulate the more precilse hypersonlc area rule in the
following way. When thin blunt bodles having axisymmetrical nose-
pleces colnciding for some distance from the leading point of the
body and having also the same laws of change 1in the areas of the
cross-section of the remaining parts:

a) flows outslde of the entropy layers are axisymmetrical; the
parameféré of the flows at corresponding points, the surfaces of the
shock waves, and the provlisorily introduced boundaries of the entropy

layers coincilde;
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b) pressure in the entropy layers depends only on x and the law
of pressure change is the same for the bodies under lnvestigation;
as a result of thils the resilstance forces acting on the bodles are
equal as the resistance X 1ls expressed in the form

X o= Nowp L2 U2, S‘ 5708) () i, (13)

where XO 1s the resistance of the no;epiece of the body. In addition
it 1s assumed that conditions 6 and 12 are fulfilled.

The results obtained are easily generalized to the case of flows
with dissoclation. A consideration of these phenomena leads only to

a change in the form of function F(p) in Eq. 11,

3. Comparison of the results. Let us compare the result we

have obtained with the area rule proven in another work [1]. The
requirement for the colneldence of the laws of change in area of a
cross-sectlon in the directlon of the x axls and also the stipulation
that body drag must not exceed bluntness drag in order of magnitude are
common to both theorems. The difference 1n the theorem proven in section
2 in the formulation econsists 1ln the followlng:

a) the obligatory condition M, 7> 1 is not imposed as 1s done
in the other work [1];

b) instead of the requirement for equality in the magnitudes of
bluntness resistance [1] a more severe limitation 1s imposed: the
nosepieces of the equivalent bodies must colncide in form, being
axisymmetrical;

c) instead of condltion 3 1n the work [1],according to which the
body does not exceed the volume dellimited by the surface of the shock
wave,the severer limitation 12 is imposed that the body must not exceed

the limits of the inner boundary of the entropy layer.
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As a result of this we may expect that the values of k found 1n
section 1 characterizing the difference of cross-section of the body

from the cross~sectlon of the equlvalent body of revolution are some-

what too high.

: U t : ! .
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1)Shock wave; 2) Flg. 2.
cross section of

the circular body;

3) cross section of

the equlvalent body.
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1)Shock wave;
2) entroplc layers
3) body
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